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A Additional Empirical Results 

Our key point in Section II is that T-bills yields appear to embed a particularly large 

convenience premium, even relative to other Treasuries. However, this claim raises a host of 

benchmarking issues. Specifically, one might worry that our quantitative results might be an artifact 

of the smooth Svensson (1994) model that GSW (2007) fit to the Treasury curve. We explore these 

benchmarking issues here. 

First, we show that similar results obtain when we compare T-bill yields to private money 

market rates. Second, we show that we obtain very similar results using less parametric models of 

the Treasury curve which do not impose as much smoothing. Third, we note that once we use high-

frequency variation in bills supply to identify the special convenience premium on bills, this 

benchmarking issue becomes far less important; it is this covariance between T-bill supply and z-

spreads that is really our essential point. 

A.1. Comparison of the T-bill curve to other money market curves 

One way to restate the result shown in Figure 1 is to say that at the very short-end of the 

Treasury-bill curve is often surprisingly steep relative to what one would have expected based on the 

rest of the Treasury curve. If this is the case, we would also expect the T-bill curve to be steep 

relative to private money market curves. For the LIBOR curve, we can we can compute ݕ௧
ሺ௡ሻ െ ௧	ݎ

ሺ௡ሻ for 

weeks n = 4, 8, 13, and 26 going back continuously to 1987. If anything, using a private money 
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market curve (as opposed to a fitted Treasury curve) should lead us to underestimate the special 

steepness at the front-end of the bill curve. Specifically, to the extent that credit spreads curve are 

normally increasing in maturity, n, this would lead ݕ௧
ሺ௡ሻ െ ௧	ݎ

ሺ௡ሻ ൌ െሺݎ	௧
ሺ௡ሻ െ ௧ݕ

ሺ௡ሻሻ to decline with maturity, 

whereas the specialness of short-term T-bills suggests that ݕ௧
ሺ௡ሻ െ ௧	ݎ

ሺ௡ሻ should rise (i.e., becoming less 

negative) with n. 

We show this analysis below for the 1987-2009 period. The results are quite similar if we 

exclude 2008-2009 and focus only on the 1987-2007 period. The plot on the left compares z-spreads, 

௧ݖ
ሺ௡ሻ ൌ ௧ݕ

ሺ௡ሻ െ ௧	ොݕ
ሺ௡ሻ, based on GSW (2007) fitted yields, with the spread between bills and LIBOR, 

௧ݕ
ሺ௡ሻ െ ௧	ݎ

ሺ௡ሻ. The plot on the right simply contrasts the steepness of these spread curves at the front-end. 

Specifically, we plot the difference between the n-week spread and the 26-week (i.e., 6-month) 

spread. As shown below, whether we use fitted Treasury rate or private money market rates, the data 

paints a similar picture of the special convenience yield on short-term bills. 

A.2. Alternative approaches for constructing fitted Treasury yields 

Gurknayak, Sack, and Wright (2007) fit the 6-parameter Svensson (1994) model of forward 

rates to Treasury yields by minimizing a weighted sum of pricing errors for a sample of nominal 

Treasuries that includes almost all off-the-run notes and bonds with more than 3-months remaining 

to maturity.1 Our overall sense, from looking at many of these fitted yield curves is that the GSW 

(2007) curve tends to fit the short end of the curve remarkably well and that, as a result, our fitted 

yields are largely capturing what we want them to capture: namely a default-free short-term interest 

rate that is (largely) free of convenience premium (i.e., demand and supply effects). One way to see 

                                                 
1 The model is ݂ሺݐሻ ൌ ଴ߚ ൅ ଵߚ ∙ exp	ሺെݐ/߬ଵሻ ൅ ଶߚ ∙	ሺݐ/߬ଵሻexp	ሺെݐ/߬ଵሻ ൅ ଷߚ ∙	ሺݐ/߬ଶሻexp	ሺെݐ/߬ଶሻ. The 6 parameters have a 
natural interpretation. 	ߚ଴ ൅  ଴ is the forward rate at very long horizons. The modelߚ ଵ is the current short rate andߚ
allows for two humps in the forward curve: ߚଶ and ߬ଵ control the magnitude and location of the first hump, while ߚଷ and 
߬ଶ control the magnitude and location of the second hump. 
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this is to compare our z-spreads to the spread between T-bills and the overnight indexed swap (OIS) 

rate, which we can do starting in 2002. The OIS rate is a good proxy for the default-free short rate 

that does not contain any moneyness premium.2 As shown below, our fitted Treasury yields largely 

tracks the OIS rate. As a result, the time-series of spreads based on these two benchmarks are 69% 

correlated in levels and 78% in 4-week changes. 

 

 

 

We also estimated cubic spline-based models of the forward curve that allow us to explicitly 

vary the degree of smoothing. As shown below, we find similar results for any estimated forward 

curve than imposes some minimal degree of smoothing. Formally, we use smoothing cubic splines to 

                                                 
2 As explained by Sunderam (2013), the OIS rate is unlikely to be affected by default risk since it is based on the 
expected compounded overnight (Federal funds) rate. And it is largely free of any convenience premium since, like other 
swap rates, it is not a rate at which a money market investor can invest principal—i.e., a swap involve no exchange of 
principal and, thus, in not a stable-value store of value in the same way as a T-bill or financial CP. 
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estimate the forward rate curve following Waggonner (1997). Specifically, we find the cubic spline f 

that solves: 

   
2 2

1 0

ˆmin ( ( )) / (1 ) ( ) ,
TN

i i iif
w P P f D w f t dt


           

where Pi is the price of bond i, Di is modified duration, and ෠ܲ௜ሺ݂ሻ ൌ ∑ ܿ௜௝exp	ሺെ׬ ݂ሺݏሻ݀ݏ
௧ೕ
଴ ሻ௃

௝ୀଵ  is 

the model-implied price.3 The first term is the sum of squared pricing errors, weighted inversely by 

modified duration—this is similar to the sum of squared yield fitting errors. The second term is the 

“roughness penalty” that imposes smoothing on the forward curve (i.e., that penalizes over-fitting). 

By varying the weight w between 0 and 1 we are able to put more or less weight on the roughness 

penalty. For instance, for w = 1, the procedure finds the cubic spline that best fits the data. As ݓ →

0, the procedures finds the best linear approximation of the forward rate curve. We obtain our 

estimated zero-coupon yield curve by integrating the estimated forward curve ݕොሺݐሻ ൌ ଵିݐ ׬ መ݂ሺݏሻ݀ݏ
௧
଴  

and compute z-spreads for Treasury bills using ݖሺݐሻ ൌ ሻݐሺݕ െ  ሻ.4ݐොሺݕ

We fit our smoothing cubic spline curves using the same subset of notes and bonds with 

more than 3-months remaining to maturity as Gurknayak, Sack, and Wright (2007).5 We then 

extrapolate these yields to the front-end of the curve to compute z-spreads for T-bills. We find 

similar that, on average, short-term bills have surprisingly low yields based on any extrapolation of 

the rest yield that imposes some minimal degree of smoothing. Specifically, the following figure 

shows average T-bill z-spreads by weeks-to-maturity over of 1983-2009 sample using the curve 

estimated by GSW (2007) as well as five alternative curves (our implementation of the Svensson 

(1994) model as three smoothing spline models). As shown below, our results do not seem 

particularly sensitive, either qualitatively or quantitatively, to the specific curve-fitting procedure we 

use. 

                                                 
3 In other words, the forward curve is modeled as a serious of piecewise cubic polynomial functions which are required 
to have continuous first and second derivatives at each of the breakpoints or knots. 
4 We estimate these smoothing cubic splines in Matlab using the IRFunctionCurve.fitSmoothingSpline 
command that is available in Matlab’s Fixed Income Toolbox. 
5 Specifically, Gurknayak, Sack, and Wright (2006) exclude (i) all callable bonds and flower bonds, (ii) all securities 
with less than 3-months remaining to maturity, (iii) all Treasury bills, (iv) old 20-year bonds beginning in 1996, (v) 
beginning with securities issued in 1980, the on-the-run and first off-the-run 2, 3, 4, 5, 7, 10, 20, and 30 year notes and 
bonds, and (vi) a handful of other issues were dropped on an ad hoc basis due to persistent pricing errors. 
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A.3. Inferring the convenience premium on bills from high-frequency variation in  supply 

Table A3 presents weekly OLS regressions of the form: 

( ) ( ) ( ) ( ) ( ) ( )

4 4 4 4 ( / )  .ˆn n n n n n

t t t t tz a b BILLS GDPy y          

This is just repeating our baseline regressions, but breaking the z-spread into its underlying 

components. Here, our use of fitted yields plays almost no role at all. The response of z-spread to 

changes in bills supply is driven entirely by the response of actual yields and not by the response of 

fitted yields.  

Why then look at z-spreads at all? Focusing on z-spreads simply enhances the power of these 

tests. This is shown in figures below where we decompose the slope coefficients b(n) from our z-

spread regressions into the difference between (i) the coefficients from a regression of changes in 

actual T-bill yields on changes in BILLS/GDP and (ii) the coefficients from a regression of changes 

in fitted yields on changes in BILLS/GDP. Focusing on z-spreads (as opposed to actual bill yields) 

simply helps to soak up some of the normal variation in short-rates and gives us more power to 

isolate the downward-sloping demand for bills. 

 Reassuringly, the regression-based plots paint a very similar picture to Figure 1: both suggest 

that the special premium on bills is particular concentrated at the very short end of the yield curve—

e.g., in T-bills with less than 3-months to maturity. 
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 We also obtain similar results in Table 1 if we regress spreads between T-bill yields and 

private money market rates on T-bill supply. Specifically, Table A.3 shows results for spreads on 4-

week T-bills relative to commercial paper, bank certificates of deposits, and the OIS rate. Panel A 

shows results from 1983-2009 and Panel B shows results from 1983-2007. Note that the OIS rate is 

only available beginning in 2002. The results for bill spreads relative to CP and CD are similar to 

those for z-spreads, albeit a bit weaker, because these spreads contain an omitted and time-varying 

credit risk component. The results for the T-bill vs. OIS spread are very similar to those for z-

spreads. 

 

B Proofs and Derivations 

 

Proof of Proposition 1: The planner’s date-1 problem is given by Eq. (11). Differentiating with 

respect to B1,2 yields the first order condition 

 
0,1 1,2 1,2 0,2( ) ( ) 0.B B B B         (A1) 

The second order condition is β(1+ β)>0. The solution to (A1) is then

 
1,2 0 ,1 0 ,2( ) / (1 ),B B B      (A2) 

which implies that 
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1 2 0,1 0,2( ) / (1 ).B B        (A3) 

Consider the problem at t = 0 where 0 0,1 0,2.G B B     Substituting (A3) into Eq. (8), yields 

0,1 0,2

2 2

0,1 0,2 0,1 0,22
0,1 0,2{ , }

1
min ( ) ,

2 1 1B B

B B B B
G B B E E

 


 

                                    

(A4) 

which is equivalent to 

2
2

{ , }

1 1 ( (1 ) )
min ( )

2 2 1S D

SD S D
G D E




   
        

(A5) 

where we have made the change of variables to 0,1 0,2D B B   , and 0,1 /S B D .  

We first differentiate (A5) with respect to S, yielding 

 2 1
(1 ) 0.

1
D E S

  


 
       

(A6) 

We note that S* = 1/2 is the solution to this the first order condition, since  

1 1 1
(1 ) (1 ) 0.

1 2 2
E E

   


                     

(A7)

 

Noting that 

   2
1 11

0,
1 2 1

E E
  

 

   
           

(A8)

 

and defining 2[(1 ) / (1 )]b E     , we can rewrite (A6) as

  2 1 / 2 0.D b S  
  

(A9)

 
We now solve for D, the level of debt. Note that  

2* * 2 1 1
2 2( )( (1 ) ) 1 1

[1 ] .
1 1 4 2

S S
E E E

 
 

    
           

(A10)

 

Optimal D thus satisfies 

2 21 1
min ( ) ,

2 4D
G D D

    
 

(A11)

 

which has first order condition 
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*( ) / 2 0 2 / 3.G D D D G     
 

(A12) 

Using these facts, we can show that 

  
2 2

21 ( (1 ) )
1/ 2 1/ 2 .

2 1 2

SD S D D
E b S




  
      

(A13) 

One can confirm that the second order conditions are satisfied at this solution. Moreover, as 

demonstrated below, the objective is globally convex in 0,1B  and 0,2B , so the solution is unique.6 

Allowing the government to issue risky securities 

We now show that, in the absence of money demand, these results continue to hold if we 

allow for arbitrary risky securities whose payouts are possibly contingent on the realization of . 

Specifically, we now allow the government to issue face value RB  of risky securities with payoff 

( )RX   at t = 2. We assume that these securities are fairly priced by households with price 

[ ( )]R RP E X  . The government’s budget constraint becomes 

0 0,1 0,2

0,1 1 1,2 1,2

1,2 0,2 2

0 :

1:

2 : ( )

R R

R R

t G B B B P

t B B P

t B B B X





 

    

  

   

 (A14)

 

 

As above, we work backwards from t = 1. The planner’s date-1 problem is 

1,2 1,2

2 2 2 2
1 2 0,1 1,2 1,2 0,2

1 1 1
min ( ) min ( ) ( ( )) .

2 2 2 R R
B B

B B B B B X                  
 

(A15) 

Taking first order conditions with respect to B1,2 yields 

1,2 0 ,1 0 ,2( ( )) / (1 ),R RB B B B X     

 

(A16) 

which implies 1 2 0,1 0,2( ( )) / (1 )R RB B B X          . 

Consider the problem at t = 0 where 0 0,1 0,2 :R RG B B B P      

0,1 0,2

2
0,1 0,22

0,1 0,2
{ , , }

( ( ))1 1
min ( ) .

2 2 1R

R R
R R

B B B

B B B X
G B B B P E

  


   
        

    

(A17)

 The first order conditions are 

                                                 
6 While the objective may not be globally convex in S and D, global convexity in B0,1 and B0,2 shows the solution is 
unique. 
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0,1 0,2 0,1 0,2

0,1 0,2 0,1 0,2

0,1 0,2 0,1 0,2

1
( ) ( ( )) 0,

1

( ) ( ( )) 0,
1

( )
( ) ( ( )) 0.

1

R R R R

R R R R

R
R R R R R

G B B B P E B B B X

G B B B P E B B B X

X
P G B B B P E B B B X

  


   


    


 
         

 
         

 
              

(A18)

 

Since [ ] 1E    and [ ( )]R RP E X  , it is easy to see that 0,1 0,2 / 3B B G   and 0RB   satisfies these 

three conditions for an arbitrary risky security. 

 We now show that the objective function is globally convex in its three arguments, showing 

that this is the unique solution to the planner’s problem. Specifically, the Hessian is 

1 1 1

1 1 2 1 2

2 1 1 2 1 2 2

1 1 [(1 ) ] [(1 ) ] [(1 ) ]

1 1 [(1 ) ] [(1 ) ] [(1 ) ]

[(1 ) ] [(1 ) ] [(1 ) ]

R R

R R

R R R R R R

P E E E X

P E E E X

P P P E X E X E X

    
     

     

  

  

  

    
        
        

H

 

(A19)

 The first matrix is positive semi-definite with eigenvalues of 22 0RP   and 0 (multiplicity 2). Let 

1
*

1

[(1 ) ]
[ ]

[(1 ) ]

E Z
E Z

E













 

(A20)

  

denote the expectation with respect to the 1(1 )   twisted probability measure and note that the 

second term can be written as 

1 *

1 1

[(1 ) ]

R R

E E

X X

  
 



                       
 

(A21)

 

which is positive definite, assuming that 1,  , and RX  are linearly independent. This shows that 

the objective function is globally convex for an arbitrary RX  and, hence, that the unique optimum is 

* *
0,1 0,2 / 3B B G   and * 0RB  .7 

                                                 
7 The matrix is positive semi-definite if these three variables are linearly dependent. Specifically, if XR = c, a constant, 
the security is equivalent to 2-period riskless bonds. In this case, all solutions with B0,2+cBR = G/3 are equivalent, so 
while B0,2+cBR is determined, neither B0,2 nor BR is determined. Similarly, if XR = c/β so that βXR = c, the security is 
equivalent to 1-period riskless from an ultimate tax-perspective. Of course, these are simply different ways of 
implementing perfect tax-smoothing, so these two indeterminate cases do not alter our substantive conclusion. 
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Proof of Proposition 2: The planner solves 

  
2

22

,

1
min ( ) 1/ 2 1/ 2 ( ) .

2 2S D

D
G D b S f SD

 
     

 

 

(A22)

 
The first order conditions for S and D are 

20 ( 1/ 2) ( ),D b S D f SD   

 

(A23)

 and 

  2
0 ( ) 1/ 2 1/ 2 ( ).G D D b S S f SD       

 

(A24)

 
The solution takes the form 

* *
*

*

* *
*

1 ( )

2

2 ( )
.

3 3

f S D
S

D b

f S D
D G






 


 

 

(A25)

 

Note that the Hessian evaluated at the solution in (A25) is 

 
   

( )2 2 1
2

2( ) ( )2 31 1
2 2 2

( ) ( ) ( )
,

( ) ( ) ( 1 / 2) ( )

f SD
Db

f SD f SD
Db Db

D b D f SD f SD D f SD

f SD D f SD b S f SD



 

  

  



 

     
 
         

H

 

(A26)

 

with determinant  2det( ) 3 / 2 ( ) 3 / 2 / 4 0bD f SD b    H , so this is a minimum. Furthermore, 

so long as ( ) 0f    , the objective is globally convex in 0,1B  and 0,2B  and the solution is unique. 

We now derive the comparative statics. Consider the impact of γ on S* and D*: 

 
   

2

1
( )2 2 1

* 2

2* ( ) ( )2 31 1
2 2 2

3 ( )

( ) ( ) ( ) ( )/

( )/ ( ) ( ) ( 1/ 2) ( )

2 ( )

6 (6 ) ( )

f SD
Db

f SD f SD
Db Db

D f SD

D

D b D f SD f SD D f SD Df SDS

Sf SDD f SD D f SD b S f SD

f SD

b b f SD b



 



  
   





 



                             
 

      
.

 

(A27)

 Since * * *2 / 3 ( ) / 3D G f S D    , we have * * *3 ( )D f S D   since G > 0. Therefore, we have 

* / 0S    and * / 0.D     

We next examine the impact of b on S* and D*: 
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 
   

2 2

1( )2 2 1* 2
2

2* 2( ) ( )2 31 1
2 2 2

2

( ) ( ) ( )/ ( 1 / 2)

/ ( 1 / 2)( ) ( ) ( 1 / 2) ( )

( ) (
2 ( )

6 (6 ) ( )

f SD

Db

f SD f SD

Db Db

b D

D b D f SD f SD D f SDS b D S

D b D Sf SD D f SD b S f SD

f SD f
f SD

b b f SD



 



  

  







 

      


         

 



 

             

 
2

) ( ) / 2 3

.( )

SD f SD bD bD

f SD

b





 



 
 
 
  

 

(A28)

 Thus, * / 0S b   and * / 0.D b    

Last, the impact of G is given by: 

 
   

 2 2

1( )2 2 1*
2

2* ( ) ( )2 31 1
2 2 2

( ) ( ) ( ) 0/

1/ ( ) ( ) ( 1/ 2) ( )

( ) 2 ( ) 2 ( ) ( )2

6 (6 ) ( )

f SD

Db

f SD f SD

Db Db

b D

D b D f SD f SD D f SDS G

B G f SD D f SD b S f SD

f SD bD bf SD f SD f SD

b b f SD



 



  

  







 

     


         

    


 

              

.
2 2 ( )b f SD 

 
 
 

 

(A29) 

Thus, * / 0S G   and * / 0.D G    

Proof of Proposition 3: For simplicity, assume that all government debt is sold to foreign investors, 

including both short-term and long-term debt. Since all debt is sold to foreign investors, domestic 

household consumption is given by: 

 

2
0 0 0

2
1 1 1

2
2 2 2

1 (1/ 2)

1 (1/ 2)

1 (1/ 2) .

C

C

C

 

 

 

  

  

    

(A30) 

(Compare (A30) with equation (7) in the text.) Substituting the government’s budget constraint in 

(6) into (A30) we obtain 

2
0 0 0,1 0,1 0,2 0,2

2
1 1 1,2 1,2 0,1

2
2 2 1,2 0,2

1 (1/ 2) ( )

1 (1/ 2) ( )

1 (1/ 2) ( ).

C G B P B P

C B P B

C B B







    

   

     

(A31) 

As before, domestic consumption is impacted by distortionary tax costs, but relative to (8) there are 

additional terms which reflect net foreign borrowing in each period.  

Assuming that 0,1 0,11 ( )P v B  , 0,2 1P  , and 1,2P   (i.e., foreign investors have the same 

preference shock as domestic households), it is easy to see that 
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2 2 2
0 1 2 0 1 2 0,1 0,1

1
[ ] 3 [ ] [ ] ( ).

2
U C E C C G E E B v B              

 

(A32) 

Thus, dropping constants, the nationalistic planner’s problem can be rewritten as 

22
2

,

1 1 1
min ( ( )) ( ) ,

2 2 2 2S D

D
G D R DS b S R DS

                  

(A33) 

where ( ) ( )R M v M M  denotes seignorage revenue and we assume ( ) 0R M  and ( ) 0R M  .  

The first order conditions for S and D are 

20 (1 ( )) ( ) ( 1/ 2),G D R DS DR SD D b S      

 

(A34)

 and 

  2
0 ( ( )) (1 ( )) ( ) 1/ 2 1/ 2 .G D R DS G D R DS SR SD D b S          

 

(A35)

 
Solving (A34) and (A35) shows that the solution takes the form 

* * * *
*

* * * * * * * *

* * * * * *
*

* *

1 ( ) ( ( ) 3)

2 ( )( ( ) 3) 2( ( ) ( ))

(2 ( ))( ( )) ( )
.

3 ( )

R D S G R D S
S

b R D S G R D S G R D S R D S

R D S G R D S R D S
D

R D S

  
 

     

   



 

(A36)

 

We now derive the comparative statics. Consider the impact of b on S* and D*. We have: 

 

1
* 2

* 22

2 2

2 2

( ) (1 - - ) ² (1 ) (1 - - ) ( 1 / 2)/ ( 1 / 2)

/ ( 1 / 2)(1 ) (1 - - ) ( 1 / 2) (1 ) (1 - - ) 1 / 2 1 / 2

2( 1 / 2)

6 4 (2

DR G D R D R D b SR DR G D R DSR Db SS b D S

D b D SSR DR G D R DSR Db S SR G D R S R b S

S

b bR


             


                




 

    
    

    

 
 

2

22

2 ( ) (1 - - ) 3
.

2 ( ) (1 - - ))( ) (6 )(1 - - )

R SR S R SR G D R

R R R G D Rb R R b G D R D

      

       

 



 
 
 

 

Since * 1/ 2S  , 
0(1 - - ) (1 ) 0G D R     , 0R   , and 0R   , we have * / 0S b    and * / 0D b   . 

The impact of G is given by: 

 

1
*

* 2

2 2

2 2

2

( ) (1 - - ) ² (1 ) (1 - - ) ( 1 / 2)/

(1 )/ (1 ) (1 - - ) ( 1 / 2) (1 ) (1 - - ) 1 / 2 1 / 2

1

6 4 (2 )( ) (6

DR G D R D R D b SR DR G D R DSR Db S DRS G

SRD G SR DR G D R DSR Db S SR G D R S R b S

b bR b R R


             


                


     

    
        

 4 (1 - - ) 4( / ) /

2 (1 - - ))(1 - - ) 2
,

SR G D R R D D

b bR R G D Rb G D R

  

   
 
  

 

 

where the second line follows by using (A36) to simplify the resulting expression. Thus, 

* / 0S G   and * / 0.D G    



 

 13

Proof of Propositions 4 and 5: We solve the second-best problem. The first-best problem can be 

seen as a special case of the second-best problem which is obtained by setting 1  . We start with 

the planner’s objective function 

2 2 2
0 0 1 2

1
[ ( ) ] ( ) [ ] [ ] .

2SOCIALU E g K K v M E E         
 

(A37) 

We plug into this the reaction function implicitly defined by equation (21) in the text, * ( , )P GM M  : 

* *

22
* 2

[ ( ) ] (1 )[ ( ( , )) ( ( , ))]

1 1 1
( ( , ) ) ( ) .

2 2 2 2

SOCIAL P P

P

U p g W W p g W M SD W M SD

D
v M SD SD G D b S

 



      

               

(A38) 

The first order condition for ***S  is 

 

 

* *
* * 2

*
* * 2

0 (1 )( ( ) 1) ( ) 1 1/ 2

(1 )( 1) ( ) ( ) 1/ 2 .

P P
P P

G G

P
P P

G

M M
p g W M D v SD M D D b S

M M

M
p g W M D v SD M D D b S

M


               
        


 

(A39) 

Where the second line follows from the fact that * *( ) (1 )( ( ) 1)P Pv M SD p g W M      . 

Rearranging and dividing by D, we obtain

 
 

*
* *1/ 2 (1 )( 1) ( ) ( ),P
P P

G

M
Db S p g W M v SD M

M
        


 

(A40)

 
which is equation (25) in the text. Note that the first-best solution given in equation (21) obtains as a 

special case of (A40) by setting 1  . The first order condition for ***D  can be written as 

  
*

2* *0 (1 )( 1) ( ) ( ) ( ) 1 / 2 1/ 2 .P
P P

G

M
p g W M S v SD M S G D D b S

M
            



 

(A41)

 We later use the fact that the first order conditions for ***S  and ***D  imply 

 *** ***3 / 2 ( 1/ 2) / 2 .G D b S  
 

(A42)

 
 Letting 

**

* *

( ( , ))
0

( ( , )) (1 ) ( ( , ))
G P GP

P

G G P G P G

v M M MM

M v M M M p g W M M




  

 
   

     
 

(A43)

 

(recall that 1 0P   ) denote the crowding out effect of short-term government issuance and
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 2(1 )(1 ) ( ) (1 )( 1) ( ) ( ) 1 .P P
P P P

G P

p g p g v
M M

     
                   

 (A44)

 
The Hessian for this problem at the solution defined by (A39) and (A41) is 

2 2

2 2

( 1/ 2)

( 1/ 2) ( 1/ 2) 3 / 2

D bD SD Db S

SD Db S S b S

     
         

H  

 

(A45)

 We assume that 0   at ***S S  and ***D D . This ensures that the second order conditions are 

satisfied since this implies 2det( ) [(3 / 2) (3 / 2) (1/ 4) ] 0D b b    H . As above, if 0  , the 

objective will be globally concave in 0,1B  and 0,2B , ensuring uniqueness. 

We now examine the comparative statics with respect to  Differentiate the first order 

condition for S with respect to  to obtain: 

* * *

(1 ) ( ) (1 )( 1) ( ) (1 )( 1) ( ) ( ) .P P P P P
P P

P

M M M
p g p g p g v D

M

 
   

   
                   
    

  
  

     

(A46)

 
Noting that

 

 

 

*

2

2

(1 ) ( )
0

( ) (1 ) ( )

(1 ) ( ) ( )
0

( ) (1 ) ( )

( ) ( ) ( ) ( )
(1 ) ,

( ) (1 ) ( )

P

P

P

p

M p g

v p g

p v g

v p g

v g v g
p

M v p g

 

 






  
 

     
    

 
     

        
  

     

 

(A47)

 

which imply *(1 ) ( ) ( )( / ) 0P Pp g v M         , the expression in (A46) simplifies to 

 

* *

2
***

2

(1 )( 1) ( ) (1 )( 1) ( )

( 1) ( )(1 ) ( ) ( ) ( ) ( )
2 ( ) ( ) (1 ) ( ) .

( ) (1 ) ( )( ) (1 ) ( )

P P P P
P

P

M M
p g p g

M

g p v g v g
v g p g D

v p gv p g

 
  

  






            
   

                  
        

 
 
 

 
 
 

 

(A48) 
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The expression in (A48) will be negative when 1   so long as ( )g   and ( )v   are not too large 

which we assume is the case.8, 9 

Combining all of this we have 

 

*** 2

2***

2 2

2 2

/ (1 ) ( )(1 ) ( ) ( ) ( ) ( )
2 ( ) ( ) (1 ) ( )

( ) (1 ) ( )/ ( ) (1 ) ( )

( 1 / 2)

( 1 / 2) ( 1 / 2) 3 / 2

S g p v g v g
v g p g

v p gD v p g

D bD SD Db S

SD Db S S b S

 


 


             
        

           

    

      

    
       

 
  

 

1

2

2 *** 2

1 (1 ) ( )(1 ) ( ) ( ) ( ) ( )
2 ( ) ( ) (1 ) ( ) ,

/ 2det( ) ( ) (1 ) ( )( ) (1 ) ( )

D

S

Gg p v g v g
v g p g

bDv p gv p g






            
       

         

 
  

    
        H

 (A49)  

where we have made use of the fact that  *** ***3 / 2 ( 1/ 2) / 2G D b S    from (A42). Thus, 

*** / 0S    and *** / 0D     so long as 1   and ( )g    and ( )v   are not too large (this also 

implies that *** *** ***
GM D S  is decreasing in  ). 

 Finally, note that 

 

   

****** *** ***
*** ***

****** *** ***
*** *** ***

[ ( , )]

[ ( , ) ] 1 0.

GP P P
P G

G

GP P P
P G G

G

MM M M
M M

M

MM M M
M M M

M


 

   


  

   

  
  

   

  
     

   

 
 
 

 (A50) 

                                                 
8 If ( )g    and ( )v   were too large, then *

/ ( ) ( / / )/ )(
P P P P PM M             , the total derivative of 

P
  with 

respect to  , would be a large negative number. In this case, as   declined, 
P

  would decline significantly (since 

0P  , 
P
  would rise), greatly reducing the crowding-out benefit from issuing short-term government debt. If this 

force were strong enough, it could outweigh the direct effect, *

(1 )( 1) ( ) ( / ) 0
P P

p g M         , which reflects the fact 

that *

P
M  rises as   falls, exacerbating the under-investment problem in the bad state. However, note that 0/

P
     

which reflects the fact that, holding 
P

M  and 
G

M  fixed, private money creation becomes more not less sensitive to the 

money premium as   declines because firms more severely underweight its costs. Thus, if /
P P

M   is not too large 

(i.e. the functions are well approximated locally by quadratics, so ( )g    and ( )v   are small), then we will have 

/ 0
P

   , implying that 
***

/ 0S     and 
***

/ 0D    . 

9 The second order conditions for ***
S  and 

***
D  also depend on ( )g    and ( )v   through  which we assume is negative. 

Specifically, one can show that ( / ) ( / )
P G P P P

M M        is increasing in ( )v   and decreasing in ( )g   . Therefore, 

( )g    cannot be too large if the second order conditions for ***
S  and 

***
D  are to hold. Specifically, if ( )g    is too large, a 

rise in 
G

M  would significantly raise 
P

 , implying an increasing as opposed to diminishing crowding out benefit from 

issuing more short-term debt. 
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Thus, the increase in private money following a decline in   is smaller when the government 

recognizes the “crowding out” benefit of short-term bills. However, the total increase in public plus 

private short-term debt is greater than in the absence of such a policy because each dollar of 

additional short-term government debt crowds out less than one dollar of short-term private debt. 

Finally,  *** ***[ ( , )] / 0P GM M     , so long as ( )g    and ( )v   are not too large and   is not too 

small (e.g. if ( ) ( ) 0g v      and 1 / 2  ). Since the first best solution obtains when 1  , the 

second-best solution involves a larger quantity of government bills and more private money creation. 

Proof of Proposition 6: Let * ( , , )P G PM M    denote the solution to equation (27) repeated here:  

* *( ) (1 )( ( ) 1).P G P Pv M M p g W M         (A51) 

It follows that 

**

* *

*

* *

* *

* *

( )
0

( ) (1 ) ( )

1
0

( ) (1 ) ( )

(1 ) ( )
0,

( ) (1 ) ( )

P GP
P

G P G P

P
P

P P G P

P P

P G P

v M MM

M v M M p g W M

M

v M M p g W M

M p g W M

v M M p g W M





 

 

 
   

     


  

     

  
 

     
 

(A52)

 

with 1 0P   . To get the second best solution, we rewrite the planner’s objective function in 

equation (28) as 

* *

22
* 2 2

[ ( ) ] (1 )[ ( ( , , )) ( ( , , ))]

1 1 1
( ( , , ) ) ( ) .

2 2 2 2 2

SOCIAL P P P P

P P P

U p g W W p g W M SD W M SD

D
v M SD SD G D b S

   

  

      

               
 (A53) 

The planner now has three control variables: S, D, and θP. 

We first compute optimal taxes. The planner’s first order condition for θP is 

*
* *

*
*

0 [ ( ( , , ) ) (1 ) ( ( , , ) 1)]

[ (1 )( 1) ( )] .

P
P P P P P

P

P
P P P

P

M
v M SD SD p g W M SD

M
p g W M

    


  


         


       


 (A54) 
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where the second line uses (A51). This implies that 

*

*** * *

*

/
(1 )(1 ) ( ) (1 )(1 ) ( ).

/
P P

P P P

P P

M
p g W M p g W M

M


  



 
        

   
 (A55) 

Thus, we have *** 0P   if 1   and   is finite. When 0  , we obtain 

*** *(1 )(1 ) ( ),P Pp g W M       (A56) 

which implies that 

* *** * *( ) (1 )( ( ) 1) (1 )( ( ) 1).P G P P Pv M M p g W M p g W M              (A57) 

This is the same as the condition defining the first-best level of optimal private money **
PM . 

However, with positive deadweight costs, the optimal tax is only a fraction of the tax that makes the 

banks fully internalize the fire-sale externality (i.e., *(1 )(1 ) ( )Pp g W M    ). This fraction is 

higher if * /P PM   is larger of if the deadweight costs are smaller. 

We next compute optimal government debt maturity. The first order condition for S is the 

same as before: 

 
* *

* * 20 (1 )( ( ) 1) ( ) 1 1/ 2P P
P P

G G

M M
p g W M v SD M D D b S

M M

                    

(A58) 

Rearranging and dividing by D, we obtain equation (29) in the text:

 

 
*

* * *

*
* * *

*
* *

*

1 / 2 ( ) [ ( ) (1 )( ( ) 1)]

( ) [ (1 )( 1) ( )]

( ) [( 1)(1 )( ( )] .
/

P
P P P

G

P
P P P

G

P
P P

GP P

M
Db S v M SD v M SD p g W M

M

M
v M SD p g W M

M

M
v M SD p g W M

MM

 




          


       


       
   

(A59) 
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This manipulation uses the market clearing condition (A51) for *
PM  to substitute out for v  and then 

uses the optimal expression for θP from (A55). The second term above, which reflects the crowding-

out benefits of issuing additional short-term government debt, is positive so long as 1   and 0  . 

 We now turn to the comparative statics calculations for the planner’s problem with two tools. 

The first order conditions for S, D, and P can be written as: 

* * 2

* * 2

* *

0 [ ( )(1 ) (1 )( ( ) 1) ] ( 1 / 2)

0 [ ( )(1 ) (1 )( ( ) 1) ] ( ) ( 1 / 2) 1 / 2

0 [ ( ) (1 )( ( ) 1)]

P P P P

P P P P

P P P P

v M SD p g W M D D b S

v M SD p g W M S G D D b S

v M SD p g W M

 

 

 

         

               
        

  (A60) 

The Hessian for this problem takes the form 

2 2

2 2

( 1/ 2)

( 1/ 2) ( 1/ 2) 3 / 2 ,

D bD SD bD S D

SD bD S S b S S

D S

      
          
      

H   (A61) 

where 

2
2 2

2

2
2

( ) (1 ) ( )
( )(1 ) (1 ) ( )( ) (1 ) ( ) ( ) 0

( ( ) (1 ) ( ))

( ) (1 ) ( )
( ) [ ( ) (1 ) ( )] 0

( ( ) (1 ) ( ))

[ ( ) (1 ) ( )] ( )

P P

P

P P

v p g
v p g p v g

v p g

v p g
v p g

v p g

v p g v

 





 

                  
    

            
    


          

2

( ) (1 ) ( )
0.

( ( ) (1 ) ( ))

v p g

v p g
   


    

  (A62) 

These quantities are calculated under the simplifying assumption that ( ) ( ) 0v g     , so that 

/ / / / 0P P P G P P P GM M M M               . However, the inequalities in (A62) will hold 

so long as the relevant third derivatives are not too large in magnitude. We assume that det( ) 0H  

by the second order condition for the planner’s problem. 

The comparative statics with respect to   follow from 
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1*** 2 2

*** 2 2

***

2

2

/ ( 1 / 2) 0

/ ( 1 / 2) ( 1 / 2) 3 / 2 0

/

1
                   ,

det( ) 2
1

(6 (6 ) )
4

P P

P

S D bD SD bD S D

D SD bD S S b S S

D S

G

bD

D b b

 




            
                     
               

 
 

 
  
 
 

   
 

H

  (A63) 

where we have used the fact that  *** ***3 / 2 ( 1/ 2) / 2G D b S    by (A60) to simplify the resulting 

expression. Thus, we have *** / 0,S  *** / 0D   , and *** / 0P   . 

 The comparative statics with respect to b follow from 

1*** 2 2 2

*** 2 2 2

***

2 2

/ ( 1 / 2) ( 1 / 2)

/ ( 1 / 2) ( 1 / 2) 3 / 2 ( 1 / 2)

/ 0

3
( 1 / 2) ( ( )) ( )

2 2

1
                   

det( )

P

S b D bD SD bD S D D S

D b SD bD S S b S S D S

b D S

S
D S




              
                       
                

        




H
3 2

3

1
( 1 / 2)(( ) ) .

2
3

( 1 / 2)
2

D S

D S

  
    

     
 
   
  

  (A64) 

Making the natural regularity assumption that 2  so the social returns to limiting private 

money creation are concave in GM  and P  (a sufficient condition is that (1 ) ( ) ( )p g v      ) and 

noting that *** 1 / 2S  , we have *** / 0,S b   *** / 0D b   , and *** / 0.P b    

Turning to the comparative statics with respect to  , note that / 0P     and / 0P     

(i.e., the efficacy of both crowding out and regulation rise as   falls). Next let 

*

2

[ ( ) (1 )( ( ) 1)] [ ( )(1 ) (1 ) ( ) ]

(1 ) ( ) ( )
    =[ ( ) (1 )( ( ) 1) (1 )(1 ) ( )] 0

( ( ) (1 ) ( ))

P P
P P

M
v p g v p g

p g v
v p g p g

v p g

  
 




                
 

              
    

 

(A65) 
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(the term is square brackets is negative for 1  ) which reflects the lower social returns to crowding 

out when the externality becomes less severe (i.e., when   rises). Similarly, let 

*

[ ( ) (1 )( ( ) 1)] [ ( ) (1 ) ( )] 0,P P
P

M
v p g v p g

 
 

                
 

 

(A66) 

(the term is square brackets is negative for 1  ), which reflects the lower social returns to direct 

regulation when   rises. We then have 

1*** 2 2

*** 2 2

***

2

2

/ ( 1 / 2)

/ ( 1 / 2) ( 1 / 2) 3 / 2

/

(( ) )

1 1
                   (( ) )
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                      
               

   


   

    

H

2

.

3

2
bD

 
 
 
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 
 

 
 

  (A67) 

Since crowding out and regulation are substitutes from the perspective of limiting private money 

creation (i.e., 0 ), both ( )   and ( )    are ambiguous because they are the 

difference of two positive terms. However, if either (i)   is small relative to both   and   or 

(ii) both b and   are sufficiently large, then we have *** / 0,S    *** / 0D    , and 

*** / 0.P     

Proof of Proposition 7: We now extend the model by adding an additional period (i.e., the dates of 

the model are now t = 0, 1, 2, 3) and by allowing short-term debt to generate monetary services at 

the interim dates (t = 1 and t = 2) in addition to the initial date. (For simplicity, we do not allow for 

private money creation.) This extension serves two purposes. First, it shows that our results are not 

driven by the simplifying assumption that households only enjoy money services at time 0. 

Secondly, the extension allows us to investigate how the hedging opportunities afforded by multiples 

maturities alter the tax-smoothing costs faced by the government. 

The government finances a one-time expenditure G at date 0 by issuing short-term (1-period) 

bonds B0,1, medium-term (2-period) bonds B0,2, and long-term (3-period) bonds B0,3 to households 

and by levying distortionary taxes, 0. At time 1, the government must repay any maturing debt by 
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levying taxes and issuing new short- and long-term bonds. At time 2, the government repays 

maturing debt by levying taxes and issuing new short-term bonds. All debt maturing at time 3 must 

be repaid by levying taxes. Thus, the sequence of government budget constraints is given by: 

0 0,1 0,1 0,2 0,2 0,3 0,3

0,1 1 1,2 1,2 1,3 1,3

0,2 1,2 2 2,3 2,3

0,3 1,3 2,3 3

0 :

1:

2 :

3: ,

t G B P B P B P

t B B P B P

t B B B P

t B B B







    

   

   

   

 (A68) 

where P0,1, P0,2, and P0,3 denote the prices of short-, medium-, and long-term bonds issued at date 0, 

P1,2 and P1,3 denote the uncertain prices of short- and long-term bonds issued at date 1, and P2,3 is 

uncertain price of short-term bonds issued at date 2. 

There are now two uncertain interest rates. At time 1, households learn β1 which pins down 

the short rate between periods 1 and 2. At time 2, households learn β2 which determines the short 

rate between periods 2 and 3. However, at time 1, households also update their expectations of β2 

based on the realization of β1. Specifically, households learn 1=E[ 2|1 at time 1, but  2 1 2 is 

only realized at time 2 where E 2|111. Note that 11/  is simply the gross forward short-term 

interest rate at time 1. Thus, there are now effectively three interest rate shocks: the realization of β1 

at time 1, the “news” about β2 at time 1, and the ultimate realization of β2 at time 2. If all shifts in the 

yield curve are parallel, then 1 1   so, in that case, there are only two non-degenerate shocks. 

Without loss of generality, we assume the term structure is initially flat: E1E12 

However, we allow 1 and 1 to be correlated. Since 1= E11Cov1 111we have 

Cov1 11. 

By the above assumptions, the prices of 1-, 2-, and 3-period bonds are all equal to 1 at time 0: 

P0,1= P0,2 = P0,3 = 1. At time 1, the price of 1-period bonds maturing at time 2 is P1,2 = 1 and the 

price of  2-period bonds maturing at time 3 is P1,3 = 11. Finally, at time 2, the price of 1-period 

bonds maturing at time 3 is P2,3  2 1 2.   

Household enjoy monetary services at time 0, 1, and 2 based on the total stock of outstanding 

1-period bonds at each date. For simplicity, we work with linear money utility in this extension, so 

households obtain money utility ( )t tv M M   at time t where Mt is the total stock of outstanding 1-

period bonds at t. Thus, we have M0 = B0,1, M1 = B0,2 + B1,2, and M2 = B0,3 + B1,3 + B2,3. 
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Basic intuition: Before proceeding with the proof, we first provide some intuition for 

Proposition 7. To begin, consider the perfect smoothing case. As before, the government needs to 

finance an expenditure of 1. One option is to set B0,1 = B0,2 = B0,3 = 1/4, which corresponds to a 

weighted average debt maturity of 2, which allows taxes to perfectly smoothed (0 =  1 =  2 =  3 = 

1/4). If there is no motive to create monetary services, this indeed the optimal debt structure.  

Now, suppose that the government wishes to provide monetary services at time 0 by 

increasing the supply of short-term bonds. Assume for simplicity that households do not derive 

monetary services at time 1 and 2.10 A simple version of the barbell strategy would be to set B0,1 = 

3/8, B0,2 = 0, and B0,3 = 3/8, levying taxes 0 = 1/4. Note that this keeps the average debt maturity 

unchanged at 2.  

At time 1, the government must pay off debt of 3/8 through a combination of taxes, new 

short-term debt, and new two-period debt. First, suppose that the term structure remains flat at time 

1, so that β1 = E[β2| β1] = 1. The desire to smooth taxes will lead the government to raise taxes of 1/4 

at time 1, leaving it with 1/8 to finance using new issues. In order to smooth taxes going forward, the 

government should raise 1/4 in new short-term debt, using 1/8 to pay off the maturing short-term 

debt and the other 1/8 to repurchase long-term bonds due at time 3. This operation leaves the 

government with 1/4 of debt maturing at both time 2 and time 3 which it repays by levying taxes of 

1/4 at each date. In other words, given an initial barbell maturity structure and the desire to smooth 

taxes, the government issues additional short-term debt at time 1 and some of the proceeds are used 

to repurchase long-term bonds maturing at date 3. The issuance and repayment schedule associated 

with such a barbell strategy is summarized in the table below: 

 t = 0 t = 1 t = 2 t = 3 
G -1.000    
Taxes 0.250 0.250 0.250 0.250 
Issuance of debt due t = 1 0.375 -0.375 - - 
Issuance of debt due t = 2 0.000 0.250 -0.250 - 
Issuance of debt due t = 3 0.375 -0.125 0.000 0.250 

Of course, β1 and E[β2| β1] are not fixed, but instead vary randomly, which creates 

uncertainty about future taxes and, in turn, generates tax-smoothing costs. How do taxes and debt 

                                                 
10 As shown below, very similar results obtain if households enjoy monetary services based on the stock of short-term 
debt outstanding at the interim dates (t = 1 and 2) in addition to the initial date. Allowing for monetary services at these 
interim dates has little impact on the optimal maturity structure at time 0 because the government always has the option 
to re-optimize its debt maturity structure at times 1 and 2. 
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issuance vary as a function of the interest rate shocks? Given the initial reliance on short-term debt, 

the government is naturally exposed to short rates at time 1: the government needs to borrow less 

and can tax less when β1 is high (short rates are low) and it can roll-over its existing short-term debt 

on more favorable terms. However, holding fixed β1, the price of the extra long-term bonds the 

government needs to retire (with the proceeds of new short-term bonds) is increasing in E[β2| β1]. 

Thus, under the barbell strategy both short-term issuance and taxes at time 1 are increasing in E[β2| 

β1]. If the realizations of β1 and E[β2| β1] are highly correlated—e.g., if there are only level shifts in 

the yield curve—then this barbell strategy means that the government has offsetting exposures to the 

β1 and E[β2| β1] shocks, better allowing it to smooth taxes. Intuitively, the government creates a 

“short” position in long-term bonds at time 1. When time 1 movements in short rates and forward 

rates are highly correlated, this “short” position in long bonds hedges the government’s natural 

“long” position in short-term bonds.  

The key insight from the multi-period extension is that if interest rate shocks are primarily 

driven by parallel shifts in the yield curve, then a barbell strategy enables the government to hedge 

out most of the interest rate exposure created by its initial reliance on short-term debt. In the limiting 

case in which E[2|1] = 1, the central tradeoff between tax smoothing and the production of 

monetary services disappears, because the government can perfectly immunize itself against interest 

rate shocks. In other words, the barbell strategy allows for a decoupling of money creation—which 

is accomplished by issuing more short-term debt—and tax smoothing, which, roughly speaking, is 

accomplished by keeping duration fixed at the right value. 

At the other extreme, if E[2|1] and 1 are independently distributed, then the barbell 

strategy no longer provides an effective hedge. Thus, if the government wants to create more in the 

way of monetary services, it must do so by shortening the weighted average maturity of its debt and 

by accepting some loss of tax smoothing. More generally, the effectiveness of this kind of barbell 

strategy is increasing in the correlation between the absolute value of E[2|1] and 1. 

The government’s time-2 problem: To solve the model, we work backwards from time 2, 

taking time-1 and time-2 issuance as given. Using (A68), the expressions for prices, and the 

expression for M2, the government’s problem at time 2 is: 
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The solution to (A69) is then
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which is the natural generalization of (A2). The first term in (A70) implements perfect tax 

smoothing between times 2 and 3 and the second component is the optimal deviation from perfect 

smoothing: the government tilts toward short-term debt because households derive monetary 

services from short-term debt at time 2 (i.e., 0  ). This solution implies that 
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The present value of taxes is * *
2 2 3 20,2 1,2 0,3 1,3) )( (B B B B        independently of  . Thus, the 

government responds to 0   by taxing a bit less an t = 2 and a bit more at t = 3 in order to create 

additional money services at t = 2. Algebra shows that the minimized objective function is given by 

2,3

2 2
2 0,2 1,2 0,3 1,3 2 2 2 3 2

2 2
2 2

2 2 2 2

0,2 1,2 0,3 1,3 0,2 1,2 0,3 1,3

1
 ( , , ) min ( )

2

) )) ) )1 1
.

2 2 ( )

(( ( ( (

1 1 1

B
V B B B B M

B B B B B B B B

    


 
   

        
     

   
  

 

(A72) 

We can omit the final term when we move backwards to time 1 since this term is independent of the 

government’s prior debt maturity choices. 

 The government’s time-1 problem: Now consider the government’s problem at time 1 taking 

time 0 issuance as given. Recall that at time 1 agents learn β1 and 1= E[ 2|1but that  2 1 2 is 

still uncertain as of time 1 since  2 is not realized until time 2. The government’s time 1 problem is: 
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The first order conditions for B1,2 and B1,3 are 
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We can rewrite this system as 
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are random variables that are functions of the realized value of 1. 

 It is straightforward to verify that the perfect tax-smoothing “consol” bond solution extends 

to the 4-period model when 0  . This in turn implies that * *
1,2 1,3 0B B   for all realizations of β1 
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Thus, optimal issuance is given by 
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and optimal time 1 taxes * * *
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In both (A78) and (A79), the second term reflects the government’s optimal response to money 

demand whereas the first term reflects a pure tax-smoothing motive (e.g., the first term in (A79) is 

the constant tax rate such that the present value of taxes equals the present value of future debt 

obligations). These tax-smoothing and money-creation motives decouple neatly in this model 

because the government has the option to re-optimize at time 2.11 Finally, tedious algebra shows that 

the minimized time-1 objective function takes the form: 
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For simplicity, we have omitted a term from (A80) that does not depend on initial maturity choices. 

 The government’s time-0 problem: Let D = B0,1 + B0,2+ B0,3 denote the total amount of debt 

issued at time 0 and let S = B0,1/D and L = B0,3/D denote the fraction of debt that is short- and long-

term. Straightforward manipulations allow us to successively rewrite the time 0 problem as: 
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where 

                                                 
11 In addition, the linear specification for money utility implies that the marginal monetary services from each additional 
unit of short-term debt do not depend on the existing stock of short-term debt. With non-linear money utility the tax-
smoothing and money demand motives would interact in indirect ways because the marginal money benefit would 
depend on past issuance and, hence, on past interest rate shocks. 
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reflect the dispersion of 1, the co-movement between 1 and 1, and the dispersion of 1, 

respectively. (Note that equation (A81) is the natural generalization of equation (A22).) For instance, 

c > 0 means that spot (1) and forward short rates (1) tend to move together at time 1. Naturally, 

higher level of b and d reflect greater uncertainty about spot and forward short rates. Furthermore 

1 1 1 1 1 1
1 2 3

1 1 1 1 1 1 1 1 1

1 (1 ) (1 )
,  ,  and 

1 1 1
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(A83) 

reflect the expected present value of future monetary services associated with issuing an additional 

unit of short-, medium-, and long-term debt at time 0, respectively. 

 The first order conditions for D, S, and L are 

 
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(A84) 

Under the assumption that the second order condition for this problem is satisfied, it is 

straightforward to show that 2bd c . Assuming that b > 0 and d > 0, the solution takes the form 

 *
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(A85) 

The average duration of debt issued at time 0 is 

* * * *

1 2 3 2
* 2

1 2 (1 ) 3

( )(1 ) ( )( )
         = 2+ .

DUR S S L L

c d A A b c A A

D bd c


       

     
  

(A86) 

Thus, in the absence of monetary services ( 0  ) we again obtain the perfect tax-smoothing 

outcome ( * * * *
0 1 2 3 / 4G       ) which is implemented by issuing a “consol” bond: 
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* * *(3 / 4)  and 1/ 3D G S L   . However, with positive monetary services ( 0  ) the government 

issues more short-term debt in order to satisfy household money demand: * 1 / 3S  . 

 It is easy to show that 3 2 1A A A   so long as Cov1 1. However, in general, 

1 2 3A A A   for almost any plausible parameterization of the two interest rate shocks. As a result, 

allowing for interim monetary services has a modest effect on the choice of D, but has little if any 

effect on the choice of S and L—i.e., on the optimal maturity structure of the debt. To simplify the 

analysis, we apply the approximation that 1 2 3A A A  ,12 and obtain:  
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(A87) 

Equation (A87) shows that * / 0S b   , * / 0S d   , * /S c c   , * / 0L b   , * / 0L d   , and 

* / 0L c   . Thus, the government issues more short-term debt when uncertainty about spot or 

forward rates is lower (i.e., b or d is lower). However, a larger absolute correlation between these 

two shocks enables the government to better hedge its interest rate exposure and ultimately take on 

more roll-over risk (i.e., a larger value of c  is associated with a higher value of S). In the natural 

case where c > 0, this is accomplished via a “barbell” strategy in which the government issues lots of 

short- and long-term debt at time 0, but little if any medium-term debt. Indeed the government may 

even choose to lend on an intermediate-dated basis (i.e., we may have 1 0S L   ).  

 The intuition is that this barbell strategy enables the government to hedge the roll-over risk 

that is created by deviating from the “consol” solution by issuing larger amounts short-term debt at 

time 0. To better see the intuition, note that time 1 taxes are 

* 1 1 1 1
1

1 1 1 1 1 1
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 (A88) 

so that 

                                                 
12 The expressions given in (A87) obtain exactly under the assumption that households derive no monetary services from 
short-term debt at time 1 and 2—i.e., they only derive utility from monetary services at time 0. 
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 (A89) 

In an attempt to satisfy money demand at time 0, they government will choose S > L and 

(1- ) / 2S L  which implies that *
1 1/ 0    . In other words, the need to roll-over short-term debt 

means that taxes will be high when the short-term interest rate is high at time 1 (i.e., when β1 is low). 

Thus, choosing a high value of S naturally exposes the government budget and hence taxes to β1 

shocks. What about the government’s exposure to 1 shocks? Equation (A89) shows that by pursuing 

a barbell strategy in which (1- ) / 2L S  the government can reduce the exposure of taxes to 1 or 

even create an offsetting exposure such that *
1 1/ 0    . When the correlation between β1 and 1 is 

high, this barbell strategy allows the government to hedge the exposure of time 1 taxes to interest 

rate shocks. This hedging strategy lowers the tax-smoothing costs associated with issuing additional 

short-term debt at time 0 which explains why *S  is increasing in c . 

 How is this strategy implemented in terms of time 1 issuance? We have 
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(A93) 

Ignoring the terms that depend on  , we have 
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(A94) 

Thus, the government must issue more of both maturities when β1 is low (i.e., when short rates are 

high at time 1). How does issuance vary with shocks to 1? Since S > L, there is the natural tendency 

for issuance to fall with 1—i.e., issuance is also higher when 1 is lower (forward rates are higher) 

at time 1. However, to the extent that L > (1 – S)/2—i.e., if the government is using a barbell 

strategy—issuance can actually increase in 1. Intuitively, the government needs to issue more to 

repurchase long-term bonds when long-term bond prices are high (i.e., 1 is high). Thus, by pursuing 
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a barbell strategy at time 0, the government can partially hedge its time 1 issuance and hence time 

taxes against interest rate shocks. 

 Numerical example: Here we explore a simple numerical example. We assume that: 

 1 1Pr( 1 ) Pr( 1 ) 1/ 2          , so that   is the standard deviation of β1. 

 1 1Pr( ) Pr( ) 1 / 2            , so that   is the standard deviation of  1. 

 2 2Pr( 1 ) Pr( 1 ) 1/ 2          , so that   is the standard deviation of 2. 

 is the correlation between β1 and 1—i.e., 1 1Pr( | 1 ) (1 ) / 2            . Note 

that 1     
 
since 1 1[ ] 1E     and that an increase in also raises c in (A82). 

Given these assumptions it is straightforward to calculate the model parameters given in (A82) and 

(A83) and then to compute the optimal debt structure given in (A85) or (A87) which imposes the 

approximation that 1 2 3A A A  . In the following table, we compute the optimal values of S, L, and 

DUR  varying the level of money demand, , and the correlation between the shocks to β1 and 1, .

 Table A1 below computes the optimal values of S*, L*, and DUR for various values of  and 

 using equations (A88) based on the parameters defined in (A82) and (A83). Computations based 

on (A87) yield nearly identical results. The computations in Table A1 assume that G = 1 and that  

 =  =  = 30%. The table shows that S* is increasing in both  and L* is increasing in both  

and  for L* is decreasing in for  which translates into a tiny negative value for c); and 

DUR is increasing in for 
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Table A1. Numerical Example. This table computes the optimal values of S*, L*, and DUR for various values of  and 
 using equations (A88) based on the parameters defined in (A82) and (A83). Computations based on (A87) yield nearly 
identical results. The computations in Table A1 assume that G = 1 and that  =  =  = 30%. The table shows that S* 
is increasing in both  and L* is increasing in both  and  for  L* is decreasing in for  which translates 
into a tiny negative value for c; and DUR is increasing in for  

0.5158 0.0% 33.0% 66.0% 80.0% 90.0% 95.0% 99.0%
0.00% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33%
0.01% 33.76% 33.79% 34.00% 34.34% 35.16% 36.82% 50.10%
0.02% 34.19% 34.25% 34.67% 35.34% 36.99% 40.30% 66.86%
0.03% 34.61% 34.71% 35.34% 36.34% 38.81% 43.78% 83.62%
0.04% 35.04% 35.17% 36.01% 37.34% 40.64% 47.27% 100.38%
0.05% 35.47% 35.63% 36.68% 38.34% 42.46% 50.75% 117.13%
0.06% 35.90% 36.09% 37.35% 39.35% 44.29% 54.23% 133.88%
0.07% 36.32% 36.55% 38.02% 40.35% 46.11% 57.71% 150.62%
0.08% 36.75% 37.01% 38.69% 41.35% 47.94% 61.19% 167.37%
0.09% 37.18% 37.47% 39.36% 42.35% 49.76% 64.67% 184.10%
0.10% 37.60% 37.93% 40.03% 43.35% 51.58% 68.15% 200.84%

0.5058 0.0% 33.0% 66.0% 80.0% 90.0% 95.0% 99.0%
0.00% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33% 33.33%
0.01% 33.32% 33.46% 33.76% 34.14% 35.06% 36.89% 51.49%
0.02% 33.30% 33.58% 34.18% 34.95% 36.78% 40.44% 69.64%
0.03% 33.28% 33.71% 34.60% 35.75% 38.51% 43.99% 87.78%
0.04% 33.26% 33.83% 35.02% 36.56% 40.23% 47.54% 105.92%
0.05% 33.25% 33.96% 35.44% 37.37% 41.96% 51.09% 124.06%
0.06% 33.23% 34.09% 35.86% 38.17% 43.68% 54.64% 142.20%
0.07% 33.21% 34.21% 36.28% 38.98% 45.41% 58.19% 160.33%
0.08% 33.19% 34.34% 36.70% 39.79% 47.13% 61.74% 178.45%
0.09% 33.18% 34.46% 37.13% 40.59% 48.85% 65.29% 196.58%
0.10% 33.16% 34.59% 37.55% 41.40% 50.58% 68.84% 214.70%

1.9899 0.0% 33.0% 66.0% 80.0% 90.0% 95.0% 99.0%
0.00% 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000
0.01% 1.9956 1.9967 1.9975 1.9980 1.9990 2.0007 2.0139
0.02% 1.9911 1.9933 1.9950 1.9961 1.9980 2.0014 2.0277
0.03% 1.9867 1.9900 1.9925 1.9941 1.9970 2.0021 2.0416
0.04% 1.9822 1.9866 1.9901 1.9922 1.9960 2.0028 2.0555
0.05% 1.9778 1.9833 1.9876 1.9902 1.9950 2.0035 2.0693
0.06% 1.9733 1.9800 1.9851 1.9883 1.9940 2.0041 2.0832
0.07% 1.9689 1.9766 1.9826 1.9863 1.9929 2.0048 2.0970
0.08% 1.9644 1.9733 1.9801 1.9844 1.9919 2.0055 2.1109
0.09% 1.9600 1.9699 1.9777 1.9825 1.9909 2.0062 2.1247
0.10% 1.9556 1.9666 1.9752 1.9805 1.9899 2.0069 2.1386












S*  = Initial Short-Term Share

L*  = Initial Long-term Share

DUR  = Average Duration
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Table A.2 
The Money Premium on T-bills and the Supply of Short-term Treasuries, 1992-2009 

The table reports weekly regressions of z-spreads on the supply on Treasury bills scaled by GDP and the supply of Treasury notes and bonds. The n-week z-spread 
௧ݖ
ሺ௡ሻ ൌ ௧ݕ

ሺ௡ሻ െ ௧	ොݕ
ሺ௡ሻ is the difference between the actual yield on an n-week Treasury bill and the n-week fitted yield, based on the fitted Treasury yield curve in 

Gurkaynak, Sack and Wright (2007). Each day they estimate a 6-parameter model of the instantaneous forward curve. Zero coupon yields are derived by integrating 
along the estimated forward curve. Yield curves are estimated using a set of sample securities that includes nearly all off-the-run Treasury notes and bonds with a 
remaining maturity of more than 3 months. We estimate this specification in both levels and in 4-week differences:  
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To compute the ratio of Treasury bills and notes and bond to GDP at the end of each week, we use detailed data on the size and timing of Treasury auctions from 
http://www.treasurydirect.gov/. The first twelve columns report OLS estimates in levels and changes for n = 2, 4, and 10-week bills. The final six columns report 
instrumental variables (IV) estimates which exploit seasonal variation in Treasury supply driven by the Federal tax calendar. In the first stage, we regress 
4BILLS/GDP (and 4NONBILLS/GDP) on a set of week-of-year dummies; in the second stage, we regress changes in z-spreads on fitted values from the first stage. 
The units of the dependent variable are basis points and units of the independent variables are percentage points. Newey-West (1987) t-statistics, allowing for serial 
correlation up to 12 weeks in the levels regressions and up to 8 weeks in the changes regressions, are in brackets. For the bivariate regressions, we report the t-statistic 
for the hypothesis that b(n) – c(n) = 0, labeled t{b(n) = c(n)} below. Panel A shows results for 1992-2009; Panel B shows results for 1992-2007. The F-statistic in the first-
stage regression of 4BILLS/GDP on the week-of-year dummies is F = 25.73 for 1992-2007 and F = 20.05 for 1992-2009. The F-statistic in the first-stage regression 
of 4NONBILLS/GDP on the week-of-year dummies is F = 10.03 for 1992-2007 and F = 3.75 for 1992-2009. 
 

 Z-spread Levels Z-spread Changes 
 OLS OLS IV 
 2-week z 4-week z 10-week z 2-week z 4-week z 10-week z 2-week z 4-week z 10-week z 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) 

 Panel A: 1992-2009 (N = 939) 
b(n) 3.92 3.22 2.42 2.49 1.46 -0.05 15.89 17.22 7.00 7.37 -0.31 -1.02 34.74 48.70 15.52 21.15 6.02 6.27 
[t] [1.86] [1.02] [1.27] [0.83] [0.90] [-0.02] [1.45] [1.58] [1.06] [1.11] [0.11] [-0.34] [5.41] [6.62] [3.67] [4.21] [2.57] [2.47] 

c(n)  0.46  -0.05  1.00  -7.71  -2.13  4.13  -51.67  -20.84  -0.93 
[t]  [0.53]  [-0.06]  [1.60]  [-1.23]  [-0.47]  [1.54]  [-3.58]  [-2.05]  [-0.20] 

[t{b(n) = c(n)}]  [0.70]  [0.68]  [-0.37]  [1.92]  [1.16]  [-1.15]  [5.44]  [3.15]  [1.20] 
R2 0.04 0.04 0.02 0.02 0.02 0.07 0.03 0.03 0.01 0.01 0.00 0.01       

 Panel B: 1992-2007 (N = 834) 
b(n) 8.59 15.83 5.55 13.39 5.16 7.73 38.82 43.27 21.62 23.53 6.89 6.11 37.29 54.53 18.07 25.04 8.23 8.19 
[t] [5.21] [5.78] [4.04] [6.21] [5.36] [6.42] [7.81] [7.94] [5.84] [6.00] [3.11] [2.67] [5.45] [7.30] [4.10] [4.96] [3.49] [3.26] 

c(n)  -2.31  -2.50  -0.82  -18.51  -7.94  3.25  -51.84  -20.96  0.11 
[t]  [-4.08]  [-5.40]  [-3.58]  [-2.40]  [-1.45]  [1.39]  [-4.59]  [-2.46]  [0.03] 

[t{b(n) = c(n)}]  [5.63]  [6.24]  [6.31]  [5.60]  [4.09]  [0.78]  [6.89]  [3.92]  [1.55] 
R2 0.09 0.14 0.07 0.16 0.19 0.23 0.09 0.10 0.06 0.06 0.03 0.03       
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Table A.3 
The Money Premium on T-bills and the Supply of Short-term Treasuries, 1983-2009 

The table reports weekly regressions of spreads between 4-week T-bills yields and 4-week private money market rates, ݕ௧
ሺସሻ െ ௧	ݎ

ሺସሻ on the supply on Treasury bills 
scaled by GDP and the supply of Treasury notes and bonds. We use three different proxies for ݎ	௧

ሺସሻ: the rate on 4-week commercial paper (CP) from the Federal Reserve’s H-
15 release, the rate on 4-week bank certificates of deposit (CD) from Federal Reserve’s H-15 release, and the 4-week OIS rate from Bloomberg, The OIS rate is only available beginning 
in 2002. We estimate this specification in both levels and in 4-week differences:  
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To compute the ratio of Treasury bills and notes and bond to GDP at the end of each week, we use detailed data on the size and timing of Treasury auctions from 
http://www.treasurydirect.gov/. The first six columns report OLS estimates in levels, the next six columns report OLS estimates in 4-week differences, the final six 
columns report instrumental variables (IV) estimates of these difference specifications which exploit seasonal variation in Treasury supply driven by the Federal tax 
calendar. In the first stage, we regress 4BILLS/GDP (and 4NONBILLS/GDP) on a set of week-of-year dummies; in the second stage, we regress changes in z-spreads 
on fitted values from the first stage. The units of the dependent variable are basis points and units of the independent variables are percentage points. Newey-West 
(1987) t-statistics, allowing for serial correlation up to 12 weeks in the levels regressions and up to 8 weeks in the changes regressions, are in brackets. For the 
bivariate regressions, we report the t-statistic for the hypothesis that b(n) – c(n) = 0, labeled t{b(n) = c(n)} below. Panel A shows results for 1983-2009; Panel B shows results 
for 1983-2007. The F-statistic in the first-stage regression of 4BILLS/GDP on the week-of-year dummies is F = 13.94 for 1983-2007 and F = 13.12 for 1983-2009. 
The F-statistic in the first-stage regression of 4NONBILLS/GDP on the week-of-year dummies is F = 13.00 for 1983-2007 and F = 6.93 for 1983-2009. 

 

 Levels Changes 
 OLS OLS IV 
 CP CD OIS CP CD OIS CP CD OIS 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) 

 Panel A: 1983-2009 
b(n) 6.10 9.21 6.03 7.21 4.34 7.79 4.72 8.90 0.39 3.84 8.02 8.60 -2.52 27.43 -3.88 27.17 15.61 26.15 
[t] [2.82] [3.62] [2.01] [1.87] [3.21] [2.37] [0.82] [1.55] [0.04] [0.40] [1.82] [1.92] [0.31] [2.94] [0.41] [2.54] [3.03] [2.90] 

c(n)  -2.46  -0.92  -3.54  -19.87  -16.74  -6.15  -67.50  -70.49  -96.75 
[t]  [-2.71]  [-0.82]  [-1.51]  [-3.27]  [-2.52]  [-1.16]  [-5.18]  [-5.07]  [-2.92] 

N 1406 1406 1408 1408 422 422 1406 1406 1408 1408 418 418 1406 1406 1408 1408 418 418 

R2 0.03 0.06 0.02 0.02 0.09 0.12 0.00 0.02 0.00 0.01 0.02 0.03       

[t{b = c}]  [3.71]  [1.72]  [2.07]  [3.25]  [1.69]  [1.97]  [4.86]  [4.62]  [3.37] 

 Panel B: 1983-2007 
b(n) 3.32 9.68 7.08 11.81 31.06 27.97 9.08 17.10 6.17 13.53 13.80 16.27 -4.93 27.56 -7.90 23.76 16.17 29.09 
[t] [1.10] [2.36] [2.23] [2.78] [6.00] [4.93] [1.86] [3.40] [1.11] [2.28] [2.70] [2.43] [-0.58] [3.04] [-0.89] [2.58] [3.70] [4.69] 

c(n)  -2.85  -2.12  -7.17  -27.03  -24.80  -15.40  -63.36  -61.74  -61.11 
[t]  [-2.77]  [-1.96]  [-3.98]  [-3.76]  [-3.36]  [-1.25]  [-5.34]  [-5.22]  [-3.44] 

N 1303 1303 1303 1303 317 317 1303 1303 1303 1303 313 313 1303 1303 1303 1303 313 313 

R2 0.00 0.04 0.02 0.04 0.37 0.42 0.00 0.03 0.00 0.02 0.04 0.05       

[t{b = c}]  [2.58]  [2.77]  [6.77]  [4.53]  [3.56]  [1.77]  [4.97]  [4.72]  [4.18] 
 


